STABILITY LOSS IN THE CYLINDRICAL EQUILIBRIUM STATE OF A
ROTATING LIQUID
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Loss of stability of the equilibrium state of a capillary liquid was defined in [1]. The
present study will determine an upper limit for loss of stability in the circular cylinder
equilibrium state of a rotating liquid confined between two parallel plates. The question of
stability of this particular state was considered in [2], and the problem of branching was
considered in [3-6]. To obtain an estimate of stability loss conditions for a circular column,
we will consider all axisymmetric and planar forms of equilibrium for a liquid enclosed be-
tween parallel plates which rotate together with the liquid as a soclid body, about an axis
normal to the plates. The question of the limits of existence of the spatial forms (observed
in [5]) and their effect on stability loss remains open. It would be interesting to study the
problem with consideration of possible breakoff of liquid mass from the rotating column,

1. Between two parallel plates separated by a distance L there is enclosed a weightless
viscous liquid with surface tension coefficient o, density p, and volume mroL. The liquid
together with the plates rotates as a solid body with constant angular velocity w about an
axis normal to the plane of the plates. The center of mass of the liquid is located on the
axis of rotation and the wetting angle is equal to w/2.

We introduce dimensionless variables by choosing the quantities ro, wre, pw?ri as scale
factors for length, velocity, and pressure. Now let n, o, z be a rotating cylindrical co-
ordinate system rigidly fixed to the plates. The z axis is directed along the axis of ro-
tation, z = 0 and z = I = L/r, being the equations of the plate planes. Liquid equilibrium
with respect to this coordinate system will be termed equilibrium of the rotating liquid.

For all values of the dimensionless parameter B = pw*rg/c one of the possible forms of
rotating liquid equilibrium is a circular cylindrical surface of radius n =1 [2].

The axisymmetric equilibrium surface is characterized by the line T along which it
intersects the semiplane o = const., We will consider axisymmetric forms for which in motion
along T from the plate z = 0 to the plate z = L the distance from the axis of rotation changes
monotonically. Such forms will be termed simple. In the case of monotonic increase simple
equilibrium forms of the form z = Z(n) are defined by the equation [2]

2H = (B/2m® ¢, (1.1)
where
N N S VS
H =g (g ) - (1.2)

To this we add the condition (wetting angle equal to 7/2)
Z'(Me) = Z'(my) = oo, {1.3)

the condition of conservation of liquid volume

i

I) WZ'dy =1, (1.4)
0

and the equation
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{z'an =1, (1.5)
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which reflects the fact that the distance between the plates is equal to 7. Here and below a
prime denotes differentiation with respect to n; c¢ is an unknown constant; and no and n,; are
the smallest and largest distances from the equilibrium surface to the axis of rotation.

Substitution of Eq. (1.2) in Eq. (1.1) followed by integration gives

nZ’ B ¢
arzyE sV T ta (1.6)
(where ¢, is an integration constant).

Equations (1.3)-(1.6) define a two-parameter family of simple axisymmetric forms to the
accuracy of the transformation z = 7 — z,

2. To study the properties of the axigymmetric forms we choose as independent param-
eters the following:

0 =mo/my;, b=p(1+0)ni/8. (2.1)

From the limit equations obtained from Eq., (1.6) with consideration of Eq. (1.3), we
find expressions for the constants ¢ and c, in terms of the parameters 6, b, n,:

c=2[1 — bl + 63)Vin(1 + 6)],
e = Ony(1 + 503/(1 +- 9). (2.2)
We substitute these expressions in Eq. (1.6) and solve the latter for Z'., 1In the equation

thus obtained as well as in Eqs. (l.4), (1.5) we transform to the new variables x = z/n., ¥ =
n/n:. As a result, from Eq. (1.6), introducing the notation

w(r,0,b) — Pl )0 (2.3)
o Vatne U t2tto - P—r) (P —6))

we obtain

dr u(r, 0,5) (2.4)
T Yh=—ne—8

from which it follows that

z=X(r,0, b u(%,0,b)dv (2.5)
§Vﬂ—ﬂﬁ—®

and from Eqs. (1.4), (1.5) we find the dependence of n; and 7 on the parameters 6, b

1 121 1/2
N — g u(t,0,b)dt i' 2u (7,0, b) dv . (2.6)
th JVE—DG—0 JVa—m@—0 | '
-1 g2l o /2
o _ v (T, 0,8) dv Tu (7,6, b)dT
l—ﬁ(e,b)~[8 Vm] /l:les‘ V(1-T)(T—9)j| . (207)

From the specified values of ©® and b the equilibrium form is defined parametrically with the
aid of Eqs. (2.3), (2.5), (2.6) and the formulas

z=mX(r, 6, b), n=nr, 0 r<<1L

Figure 1 shows the function F(8, b), calculated with Eq. (2.7) by computer. Simple
axisymmetric equilibrium forms exist only for 7 < w,
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The curve corresponding to the value b = 0 corrésponds to equilibrium forms of the liquid
at rest. Such forms exist if L >F(0, 0) = VI.5. If 8 =0 (0 < L < /I.5), then lim% =0 and

=6
the boundary condition on the plate z = 0 is disrupted. In this degenerate case we obtain
equilibrium figures of a rotating liquid droplet, pendant on the plate z = 1, At b = 0 the
droplet comes to rest, and its surface has the form of a hemisphere of radius 7 = y1.5. With
consideration of the fact that the problem of equilibrium forms is invariant relative to mirror
reflection in the plane z = I, it can be said that at 6 = 0 equilibrium figures of an iso-
lated rotating droplet are obtained. Such figures have been studied previously by many
authors (see the bibliography of [1l]), and in particular, their stability was considered in

[7].

The dashed line of Fig. 1 depicts the curve I = F(8, B), where B = (1 +8)~" x (1L — /8)—2,
Forms for which the point F(8, b) lies above this curve are projectaple unambiguously on the
z axis, while in the opposite case their projections are ambiguous. This follows from Eq.
{2.4) and the following property of the function u(r, 6, b), valid for all values of 6§ = [0,
1): for b < B for all r<= [6, 1] the function u(r, 8, b) > 0 (with the exception of the case
r = 6 = 0, where dX/dr = 0), while for b > B there exists an interval A & (0, 1), such that
forall r in A the function u(r, 6, b) < 0. If 6=0, thenB =1, which agrees with the result of [7].

As O - 1 the equilibrium figures tend to a circular cylindrical surface. From Egs.
(2.6), (2.7), after change of the integration variable 1 = (1 + 0)/2 + (1 — 8)t/2 we find
that at @ = 6% = 1 the parameter n; = 1, and Z = n/¥l + 4b; hence with consideration of Eq.
{(2.1) we find

* = 4b% = (/I — 1, | (2.8)

coinciding with the condition for branching of a circular cylindrical surface found in [4, 6].

At 7 = 0 the problem of branching of the circular cylindrical equilibrium state has no
meaning. The system (1.4), (1.5) is nonsimultaneous in this case. However if we change
condition (1.4), for example, by equating the liquid volume in the volume of a sphere of unit

M
radius (5 yﬁZ’dn::4/3}, then at I = 0 Eqs. (1.3)-(1.6) will define a single parameter family
Mg
of toroidal equilibrium figures. It is known [1] that all such figures are unstable. The
curve I = F(8, be), where bo = 2,32912, commences at the origin. The value of bo was calcu-

489



1
. " - . £ A —
lated by Newton's method from the equation \[u(T,O.M/VT(i_~ﬂ]dr==O. At b = bo rotating
) 0
droplet equilibrium figures intersecting the axis of rotation cease to exist, and beginning
with this value, toroidal figures exist. There has been discussion on the definition of
the critical value bo (see [1, 8]), which was resolved in [7]. The value of bo determined in

the present study coincides with that obtained in [7] and later confirmed in [8].

For b > bo the function F(6, b) was constructed for b{ values such that at 7 = 0 and
b = bj the parameter 6 = 8i = 0.1i (i = 1, 3, ..., 9). The numbers b; were calculated by
1

Newton's method from the equation s[u(rlﬁi, b)/]/(i—'c)('v—ei)dq: =0 (for 6; = 0.051, i =1,
9
2, ..., 19), while for the initial approximation to bj the value of b;_, obtained in the

1
preceding step was used.

Let k 22 2 be an integer., We denote by I'y (1 =0, 1, ..., k — 1) the segment of the arc
of meridional section T', included between the planes z = il/k and z = (i + 1)Z/k. We will
say that an equilibrium form ' has a multiplicity of k, if To is a simple curve, and for
every i 221 the segment I'y can be obtained from T'j.; by mirror reflection in the plane z =
il/k.

The branch of axisymmetric forms with multiplicity k branches from the cylindrical
state at values By = k2(n/1)2 — 1.

Any axisymmetric equilibrium form is either simple or multiple. In fact, if two
simple equilibrium surfaces are 'extensions" of each other, forming one axisymmetric form,
then each of the forms is uniquely defined by three parameters: no, ni and B(ne, ni, B), where
ne is the value of n in the "contact" plane, and n, and n] are the values on the solid planes.
But in view of the continuity of the mean curvature, there follows from Egs. 1.1, (2.1),
(2.2) the equation 2/(no + ni) — B(nd + n?)/2 = 2/(no + n}) — B(nd + ni?)/2, which is valid
only for n; = ni.

At 7 > 7 there exist only multiple forms,

We will fix 7 and find the function b(®) by linearizing Eq. (2.7) in the vicinity of the
critical values 8%, b":

F (8%, %) — 1 -+ 22 (0%, b¥) (8 — 0%) -+ 2L (0%, b%) (b "

Hence, considering that F(6%, b*) = I, we find
OF e pon OF s
| b=b* -+ (0% — 0) 37 (6%, 1¥)[3- (6%, 7).
Setting 0 = 8} = 8% — h (in numerical computation the value of h was chosen equal to 1072), we
obtain an approximate solution by to Eq. (2.7). Linearizing the equation F(6p, b) — 7 = 0 in

the vicinity of b = b, we find a formula for the refinement of the root by
8
b= i+ (L F (8, b)) 55 (Bn, br)-

With this formula the value of by is refined to the point where the difference |b —-bhl be-
comes less than 10~°. For the refined value of by and 6 = 6y Eq. (2.7) is accurate to six
decimal places. In this manrer, moving with a step h in & in the direction of lower 6, we
find the function b(8). At «Fch step values ofn:(8) and B(®) (Egs. (2.6), (2.1)) are also
calculated. Expressions for o¢F/36, 3F/3b will not be presented because of their cumber-

someness.

Figure 2 shows meridional sections of equilibrium surfaces for 7 = 0.3 and several
values of the parameter 6 (which uniquely defines the value of B). It is interesting that
at small @ the equilibrium forms intersect the plane z = 0. Such forms are physically
realizable if the dimensions of the plate z = 0 are sufficiently small. At B = 9.93 (6 =0)
the equilibrium form degenerates into a rotating droplet with some concavity at its pole.

3. We will consider the stability of axisymmetric equilibrium states in the sense of
Lyapunov and Rumyantsev [1]. Let T be a simple equilibrium form, s the ratio of the arc
length T', measured from the plate z = 0 to the farthest removal n; of curve T from the axis
of rotation, and N(s, a) the normal component of the free surface perturbation, referred
to ni. Commencing from the principle of minimum potential energy [1, 8], the question of
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stability of the axisymmetric form T can be reduced to the problem of eigenvalues of the
following linear boundary problem for the function N(s, a):

1af_ an\ 1N o /0<S<51,).
‘TEE(r 0'?)”35&?‘{—&\/1—”—}” k0<m<2n,’ (3.1)
W0 (s=0), D=0 (=2 (3.2)
31 27 S1 em 1 2m
Y Nrdsdo = 0, (. § Nrcos adsda = S S‘ Nrsin adsde. = 0. (3.3)
0 00 g0

Here s; is the value of s at the point of intersection of T with the plane z = I, With
specified values of 6 and b the value of s, is given by

rG (r, 8, b) dr
s, = (1+0) V(T"“—) ; (3.4)

where

G(r, 8, b) = 1/7/1 F 26(° + 0) — 631 — rO)( — 69). (3.5)

The function a is expressed in terms of the mean curvature H and the Gaussian curvature K =
z'Z"/[ (L + 2'%)%] with the formula

ma=—2 —4H* 4 2K, 2 —n-V, (3.6)

where n is the unit normal vector to the surface, directed into the liquid filled region; the
first equation of Eqs. (3.3) expresses the conservation of liquid volume, while the second
implies the admissability of only those perturbations which leave the center of the liquid
mass on the axis of rotation; the dependence of r on s is given by

s = J(r) = (1 = 0) SV(TG(r 9, b)dre_) . (3.7)

The eigenvalues of the problem of Eqs. (3.1)-(3.7) are real. If the smallest eigen=-
value Ax is positive, then the corresponding equilibrium state of the viscous liquid is
stable, while if Ax is negative, then it is unstable.

o

Representing the function N(s, @) in the form of a series N = ¢, (s)-- > [@n(5) cos ma—

1
m=1

Y {$) sin ma], it can be shown that Ay = min (lo, Az, Az}, where )Xo is the smallest of the
eigenvalues of the problem

1 4{ 49 .

?%(rd—i’>*a@o“ktf/v@o=0 0<<s<Csy)s (3.8)
de S}
—= =0 (s=0,s=g), |ords=0, (3.9)

0
and the numbers Ay (m = 1, 2) are defined similarly for the problem
1 d( dp / .

a, g (3.10)

"d?‘zo (s=0, s=3), f(plrzdSZO (m=1,2).
0
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After simple transformations we obtain from Eq. (3.6)

where

P=r"4+8—5b1—r)(r—0%;
Q = 2br* + 1 — b(1 + 6%). : (3.12)
The eigenvalues of Eqs. (3.8)-(3.10) are calculated by the Galerkin—Ritts method [9].

Let {yx(s)}y=,,2,... be the complete system of functions satisfying condition (3.9):

d w7k
yp=25°—=3% — 2, =5 (s —s) — + (k=2,3,...),
0 0
!

1
26 {r, 8, b) dr.
Jo=\rds=(1-+86 e
’ (S” e )§ V=6 —o)

51

= jﬂ (25 — 3s%s;)rds = (1 +0)

9

ren (3.13)
PR =35I OIG 8, b) dr

V(i — ) (% — 8% '

e T

51
Bo= s 6= sytras = (14 e)j 0 ”_.__“)“’ (N6, 0,0) dr
0 V(i— —8%)

Expanding ¢o(s) in the form of a series ¢, = chhjks) and striving for orthogonality of the

left side of Eq. (3.8) in the functions yi, ..., yp, we arrive at the system of equations

p;wm+m%@%:o (g=1,2,...,n), (3.14)
where
: d
o —-——(14—9)&( + ay y)-2§é22=2;22=; (3.15
P.q ) ds ds pJgq V(i——r 92) )
G (r,0,b)dr

=(1+86 2B
%q(4—q%w]ﬁhﬂw_ﬁ

The functions yy and their derivatives within the integrand of Eq. (3.15) should be expressed
in terms of r by means of Egs. (3.7), (3.13). Setting equal to zero the determinant of sys-
tem (3.14), we obtain

(3.16)

R R A R ] \
o s e — 0
Gn,1 + ?"Yn,l R o AVn.n

whose smallest root gives the approximate value of ), (approximation with excess). Equations
for finding A; and A, are found similarly.

In numerical calculation the set of parameters 6, b are chosen in the following manner.
Initially, for each fixed value of by = 0.04i (i = 0.1, ..., 58) the parameter § is varied
in steps of 0.05 from 0 to 0.95. Then values of by (1 =1, 2, ..., 18), are fixed such that
the curve 7 = F(6, by) intersects the axis 7 = 0 at the value 65 = 0.05i; at each bj value
in this case the parameter 8 is varied in the same steps as before over the range [64, 0.95].
For each pair (6, b) the coefficients apq and ypq are calculated with Eq. (3.15), after which
Eq. (3.16) with number of coordinate functions 1, 2, ...5 n is used to find the approxi-

mations Agl), Ag?s eens A(n (correspondingly A( s sees Amn) m=1, 2). To prove
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the instability of all simple forms {and thus, all multiple forms) it is sufficient to calcuw
late only the value of A }; at 6 < 0.95 and the numbers A(l), x(z) J\( ) for 6 = 0,95; if § <
0.95 then for all sets of parameters (6, b) the values of A(‘) are negatlve, while at © =
0.95 the numbers A(B) are negative (and close to zero).

For 6 = 1, r =1 Egs. (3.8)-(3.12) comprise the problem of stability of a cylindrical
equilibrium state [2]. The critical values of the parameter b, defined by Eq. (2.8}, corre~
spond to the eigennumbers Xy = 0.

Numerical calculations reveal that to find the values of A, and A; to an accuracy of two
decimal places, it is sufficient to limit the number of coordinate functions to n = 4, For
n = 3.4 Eq. (3.16) was solved by Newton's method, with the initial approximation to Aén)
being taken in the form of the root A(n=1) > A(ns. For b = 0 the values of A;, Az > 0. For
fixed 6 with increase in b the numbers A; and X; decrease monotonically. The curve I =
Fi1(8, b) (see Fig. 1) was constructed with those values of & and b, for which A; = 0, and on
the curve I = F,(0, b) the number A, goes to zero. In particular, for 7 = Fo(l, 3/4) =
m/2 the value A, = 0 [2], and, according to the results of [5], at these parameter values,
aside from axisymmetric and plane equilibrium forms, there are also spatial equilibrium
forms branching from the cylindrical state. It is completely possible for branching of the
axisymmetric states to occur at I = F,(8, b) (and also possible at 7 = F,;(8, b)).

Results of the study of stability of a rotating viscous droplet are presented in [1].
The isolated viscous droplet is stable for O0<C b<C b,o A 0.4587. Upon transition through the
value bio stability is lost relative to second harmonic perturbations. According to the re-
sults of the present study a droplet confined between parallel plates (& = 0) is unstable
{(relative to axisymmetric perturbations) for all values of the parameter b. The difference
in the results is explained by the fact that, for petturbations as small as desired satisfying
the wetting conditions on the plates rotating constrained at a specified velocity, there
occurs an increase in system energy leading to the increase of the perturbations. It is
curious that a droplet at rest in contact with parallel plates is also unstable.

4, The cylindrical equilibrium surface is characterized by a line of intersection with
the plane z = const. We will consider nonaxisymmetric cylindrical figures, the normal
sections of which have n~fold symmetry relative to the z axis (n =2, 3, ...). We will refer
to such figures as planar equilibrium forms of multiplieity 2n, A planar form of multiplicity
2n is defined (to the accuracy of rotation about the z axis) if the function o = A;{(n) is
known, which specifies the simple segment of its normal section.

The function A;(n) satisfies Eq. (1.1) in which now

1 A \/
H = A_ .—_‘——-—i—"".— bl 4.
2n ( (TlgAf'f‘ 1)1/2 ) (4.1)

and also the conditions of conservation of volume,

iy
i =2, (4.2)
o
Symmectry,
A (ng) = Ag (n) = o0 (4.3)
and periodicity
T;I
j Aydy == ﬁ} (4.4)

For right cylindrical forms the boundary conditions on the plates are fulfilled automatically,
From Eq. (1.1) with consideration of Eq. (4.1) after integration we obtain
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ﬁ . 4 ¢ |
= Wt - ';rﬂz T 6y (4.5)

For definiteness we will add to system (4.2)~(4.5) the condition A;(ne) = 0. We trans~
form to the variable r = n/n, and introduce the parameters of Eq. (2.1). Then to find the
normal sections we obtain the parametric equations

o =A(r, 0, b), n = R, b)r, b = b(@),
0<f<1, 0r<t,

where
" (1,0,b)d Ve
A(r, 8, b)=5——;‘é_h—7———; R(®,b) = i , (4.6)
JTVA—=7(T—0) b tu(t,8,b)d

" ) VI=0 -9

and the function b(6) is determined numerically (as in section 2 for the case of axisymmetric
forms) from the equation

u(t,0,b)dt .

Ty ot

JiVi—ni—06 * (4.7)
to which must be added the bifurcation condition
by =PBm=n*—1 (n=2,3,...). (4.8)

This condition is obtained from Eq. (4.7), if we transform to the limit as & - 1,

The family of cylindrical equilibrium surfaces is characterized by two independent
parameters, For these parameters we choose the distance between the plates I and the
parameter 6, which with the aid of Eqs. (2.1), (4.6)-(4.8) will be used to define the value
of the dimensionless angular velocity 8.

Plane figures were studied in the vicinity of the critical values Bfn)'in [3]. Ex-
panding the solution of the general problem of cylindrical forms continucusly deviating from
a circular cylinder and applying the normal method of expansion of the solution in powers of
the small deviation amplitude, the authers of [3] found bifurcation points (4.8), conmstructed
the equilibrium figures in the vicinity of these points, and also obtained the relationship
between the amplitude deviation of the normal section of these figures and the angular veloc-
ity of rotation. The functions found by them are shown as the curves Yy, and ys of Fig. 3.
The branches v} and v} were constructed from the exact formulas (2.1), (4.6)-(4.8) with
numerical calculations. In the vicinity of the bifurcation points the curves yn and Yﬁ coin~-
cide. The difference in their further behavior is explained by the fact that the approximate
solution obtained in [3] loses force.

Figure 4 shows the complete path of the bifurcation curves for n = 2, 3, ..., 6.

Cylindrical forms, the normal sections of which have second order symmetry about the z
axis, exist to the value 6 = 0 (B8 % 0.79). At 6 = 0 the cylindrical surface intersects the
axis of rotation and such a surface is devoid of physical meaning.

With order of symmetry n > 2 the cylindrical forms cease to exist even at some 6(n) > O.
Numbers B(p) corresponding to these 6(p) are shown in Fig. 4. When the value B(p) is reached,
self-intersections form on the cylindrical surface.

Figure 5 depicts the form of normal cylindrical figures for n = 3 and several values of
the parameter B.

At n = 1 the center of mass of the plane figures does not lie on the axis of rotation.
The problem of Eqs. (4.2)-(4.5) for such figures will not be considered here.
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Just as in the case of axisymmetric forms, it can be shown that no cylindrical forms
lacking symmetry relative to the axis of rotation are stable.

5. We will study the stability of the cylindrical figures. For an equilibrium figure
with even order symmetry we will consider plane perturbations

@(s) = cp(co s(2ans/s;)-Fsin(2nns/sy)), (5.1)

where s is the arc length of the normal section referred to ni. The value of s varies over
the range 0 s<{s <(s8,, the points s = 0 and s = s, corresponding to the values ¢ = 0 and a =
2n, The arbitrary constant cp characterizes the closeness of the perturbed surface to the
equilibrium surface considered. The function ¢ satisfies the unambiguity conditions

9(0) = @(s)), dop/ds(0) = de/ds(s,). (5.2)
The perturbations of Eq, (5.1) maintain the liquid volume

g‘ ¢ds =0 (5.3

0

and do not displace its center of mass from the axis of rotation

81 51
\ (prcosz—;-r—sds:ycprsin%?—fdszo. (5.4)
Z) 1 0 1

The sign of the second variation of the potential energy in the perturbations ¢ is de-
termined (see [1l]) from the sign of the integral

si

o
[1]

The function a is calculated from Eq. (3.6), and for cylindrical forms appears as
= —4(2bP + QB/(1 + O~

Substituting the functions a, ¢, d9/ds in Eq. (5.3), we obtain

sy/an
2
o] 4o’

n? 4eln
I,=c, +2njvads _(1—1—6[ [n? — I.1,1,
. 0

5

where

1
I = 51/0(79;”“ T (2bP~,‘-—()2)G(T,9,b)d1:! (5.6)

A= (=6 o Vi—9k—6)



B=2,52

Fig. 5

the functions P(t), Q(t), G(1, 6, b) are defined by Eqs. (3.12), (3.5) if we take r® = 1
therein.

A plane figure with even order symmetry is unstable (in the Lyapunov—-Rumyantsev sense),
if for its parameter values 6, b(6) the inequality

I112> n? (5.7)

is fulfilled, At 6 =1 the integral I = w/v1 + 4b = n/n, and I, = wv¥l + 4b = mn, so that for
any n the product I,;I; = 72, Inasmuch as this product is independent of b, at the bi--
furcation point the derivative "along the branch" d(I.:/I.)/d6|g=1 coincides with the partial
derivative 3(I,I 2)/8659_ . With the aid of Eq. (5.6) we find that at 6 = 1 the derivative.
9(1:I2)/30 = 0, while d*I,[,)/d0* = 6%(I,I,)/00? = 12nb%/(1 + 4b)*> 0. From this it follows that

for each branch Eq. (5.7) is satisfied in the vicinity of the bifurcation point. In
other words, all plane figures with even order symmetry which branch from a circular cylindri-
cal state at values B(p) = n® — 1 are unstable in the vicinity of these values.

Along the branches with n = 2,4 the product I,I, was calculated with a computer. It was
shown that with decrease in the parameter € (or B) this product increases monotonically.

We note further that for a circular rotating colum a = -8 — 1, s, = 27, I¢ = ch;(n2 —
1 — B). Thus with increase in B the second variation of the potential energy in the pertur-
bations of Eq. (5.1) decreases and changes sign to negative upon transition through the bi-
furcation value B?n)‘

For the equilibrium states with odd order symmetry n (n 2> 3) a perturbation of the form

Q=cp (I(,,_l)cosg:—;"—s—-—-I(,,)cos ﬁt——(—%———i)—f), : (5.8)
1 i

8 ‘
where l'(‘)==5rcosgﬂsil-)—s Z“sds satisfies the necessary conditions (5.2)-(5.4). For 6 = 1 the
H 1 5
integrals I and I(p-y) are equal to zero, and consequently, I, = 0. We will show that
nontrivial equlllbrlum figures with parameters 6 and b close to the bifurcation values are
unstable in the vicinity of the bifurcation points Eq. (4.8). For the perturbations of Eq.
(5.8) we represent the integral I, in the form

2m:2 _
L= o7 [Im w(t — LL) + I, (_Un__&_” )]
2ch { 4nns E '
—4 n et i (=— 1)5(2!)1’ -+ Q2 )cos ds + 1%, | (262 -+ Q9
o
81
X coséi‘_(ﬁ:_l_)_f ds — I(n—l)-{(n)j(sz 02) cos 21ns oS 2n(n —1)s ds}.
Sl o 31 sl
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It can be shown that at 6 =1, alongwith the expressions in the squared and figured brackets
the first derivatives of those same expressions with respect to & go to zero, while for the
expressions in figured brackets the second derivatives with respect to 8 are also equal to
zero., With consideration of these facts, we find that at € = 1 the derivative dI,/df = 0I,/38
= ( and

T ,/d0° — 991007 =2a*n I (P2 ()2 — 1] (81 08)2 = — 2a% (2m —1)n"* < 0.

From this it follows that in the vicinity of the bifurcation points I, < 0, proving the in-
stability of the branched equilibrium figures with odd order symmetry.

6. We define the potential energy of the rotating liquid by the formula [1]

U:az—-%uﬁl, (6.1)

where T is the moment of inertia; I is the area of the liquid free surface. For simple axi-
symmetric equilibrium states

1 1
* 4 1
S‘=23r2,21¢9§ r’G (r, 0,b) dr 7 9orin® | s 8 ndr
= S g Va-AFE-6) p“lé Va—n(—0

Substituting these expressions in Eq. (6.1), we obtain

1
726 (r, 0, b) dr . b g‘ riu (r, 0, ) dr ] 6.2)

- _ U e B -
b=t =i O Vismees T vaearen

For fixed I the function b(8) can be defined by the numerical method described in Sec. 2.
For an axisymmetric form of multiplicity k, characterized by the parameters 0, b(6), the
energy Ex = kE,;.

For planar equilibrium figures with n~fold symmetry relative to the axis of rotation

G (r, 0, b) dr

= 2 6 s
S = 2ninri(t + >6f e

Hence, with the aid of Eq. (6.1) we find
1
U G (r,0,b) dr b Y Pulr,0,b)dr
B, = - 5 ey A : 6.3
b 2wlo [ N Veoae-m Y Va-ae-9 (6-3)

For a specified n the function b(8) is determined numerically with Eqs. (4.7) and (4.8).

1
Pu(r,9,b)dr

3 L,
I-—-2Pnhhfbe S0

For a circular cylindrical equilibrium state
v p
E,= = — L
o 23”30' ! (1 8 )

Using Eqs., (6.2) and (6.3), the energy of axisymmetric and cylindrical forms was calcu-
lated numerically for a number of values of the parameters ! and n (steps of 0.0l in 6), and
then for a given I (or n), using the value of b(8) thus found, the parameter B was determined
with the aid of Egqs, (2.1) and (2.6) (or Egqs. (2.1) and (4.6)). TFor each B together with
the value of E; (or E,) the energy Eo of the circular cylindrical state was also calculated.

According to the results of [2], a c1rcu1ar cylindrical column of rotating viscous liquid
is stable, if

B << Pw = min (¥, B3 )= min {(=/)* — 1.3}.
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For B < Bx we introduce the function
O (L B) = min {£:(1,B) —E, (1.B)}, (6.4)

where the minimum is calculated over all axisymmetric (simple and multiple) and all plane
equilibrium forms, existent at the values of 7 and B.

Equation (6.4) provides an upper limit for loss of stability of an equilibrium viscous
liquid, characterized by parameters . and B. The function ¢ is presented in Fig., 6 for
certain 7 values.

For 7> n/2 the cylindrical state is stable if B8 < Bx <{ 3, For such B values the lowest
potential energy is found in simple axisymmetric forms, existing for 0= B < Bx. The
function ¢(B) is presented in this case for the values I = 2,5; 2; n/2., TFor fixed 1 the
function ¢(B) reaches its maximum value ®p,y at 8 = 0, If 7 = /2, then dpax ~ 0.204., With
increase in.l the value of &pgx decreases., For Z = 2,5 the value is 0.04.

For 7 < m/2 the critical value Bx = 3. If V1.5<C 1 < /2, then ¢(B) is defined for all
0 << B< 3. Beginning at the value B = 0 up to some value B7 =& (0.79; 3) the lowest potential
energy is found in simple axisymmetric forms, and for B > B7, in figures with fourfold
symmetry. For 7 < /i:% the function is defined only beginning with some value § = 89 > 0,
corresponding to a degenerate axisymmetric form ¢&(B). For 7 = 1,1 the number B% = 0.51,
while B7 = 0.104, For 7 = 1 the function E;(B) is defined only for B > 0.95 > 0.79. The
curves @ = E; (1, B) — Eo(1, B), and & = E5(1, B) — Eo(l, B) do not intersect. For 1< 1 the
function @(Z, B) = E,(l, B) — E¢(l, B), where E;(l, B) is the potential energy of a plane
figure with n = 2 symmetry. For each I <1 the maximum value of épyyx is achieved at B = 0.79.
For I = 1 this is equal to 0,34. The function ¢(B) itself is defined for 7 <{1 in the inter-
val (0.79; 3).

The author expresses her gratitude to L. V. Ovsyannikov for scientific guidance and to
V. V. Pukhnachev for his many valuable contributions to the study.
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EFFECT OF INTERPHASE TANGENTIAL FORCES ON FLOW DEVELOPMENT
IN A WEAKLY CONDUCTIVE LIQUID

A, I. Zhakin UpC 533

Coulomb forces induce motion in a weakly conductive polarizable liquid by means of volume
forces [1-5] and tangential surface stresses {2, 6]. While the former type of flow has a
threshold character [1~5}, the latter can develop in a vanishingly small electric field upon
motion of surface charge over the free surface of the liquid [6]. The surface charge accumu~
lation time on the free surface is of the order of magnitude of the free charge relaxation
time te = €/0 [7]. If the problem characteristic time to satisfies the inequality to < ta,
then surface charge can be neglected and the major role will be played by polarization forces
(for example, in problems involving stabilization of the free surface of a dielectric liquid
by an electric field [2, 8, 9]). For to = tg Coulomb surface forces cannot be ignored, and
their consideration leads to the possibility of electroconvective flows.

In the present study the basic principles of thresholdless electroconvection will be
considered, using the example of flow of a weakly conductive polarizable 1iquid under the action
of surface forces produced by a special electrode geometry.

1. Formulation of the Problem. We will consider two incompressible viscous weakly
conductive polarizable immiscible liquids, situated between two infinite horizontal electrodes
and separated by a free surface S, We introduce a cartesian coordinate system as shown in
Figs. 1, 2, and denote by Qi the region occupied by liquids, with §; = (—= < x < ®, z = h, +
a cos wx) being the upper curved electrode, and Sz = (— < x < », z = -h,), the lower planar
electrode. Here and below, the indices 1 and 2 refer to quantities defined in the regions
Q;, on

Liquid motion will be described by the electrohydrodynamics equations

0:(0vi/0t + (v;y)V;) = —yp: + nAv; + ¢;Ei—pige,,
div Vi = 0, div SiEi = 4Tﬁqiv Ei = —vy@;, (l.l)
dg;/0t + div §j; = 0 on Q;,

where 04 is the density; p; is total pressure [8]: §i = 0iE; + ¢V is current density; Ni, 0i
are constant dynamic viscosity and conductivity coefficients; qi is volume charge density; Q1
is electric field potential; €i is dielectric permittivity; g is acceleration of gravity
i=1, 2).

The boundary conditions for Eq. (1.1) follow from the conditions of adhesion, specifi-
cation of potential on the electrodes, and kinematic, dynamic, and electrodynamic conditions
on the free surface., They have the form [6, 8]

S;:vi =0, ¢ =U =const; S,:v, =0, 9, = 0;
S <V> = 0, 6f/at = Vl'an](ll'lz, @) = Qg
(eE«n) = 4ngg , 8qg /0t + divgi —~ Hqgvy-n - {jn) = 0,

Khar'kov. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4,
pp. 69-76, July-August, 1981, Original article submitted May 29, 1980,
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