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Loss of stability of the equilibrium state of a capillary liquid was defined in [I]. The 
present study will determine an upper limit for loss of stability in the circular cylinder 
equilibrium state of a rotating liquid confined between two parallel plates. The question of 
stability of this particular state was considered in [2], and the problem of branching was 
considered in [3-6]. To obtain an estimate of stability loss conditions for a circular column, 
we will consider all axisymmetric and planar forms of equilibrium for a liquid enclosed be- 
tween parallel plates which rotate together with the liquid as a solid body, about an axis 
normal to the plates. The question of the limits of existence of the spatial forms (observed 
in [5]) and their effect on stability loss remains open. It would be interesting to study the 
problem with consideration of possible breakoff 6f liquid mass from the rotating column. 

i. BeO~een two parallel plates separated by a distance L there is enclosed a weightless 
2 

viscous liquid with surface tension coefficient ~, density p, and volume ~roL. The liquid 
together with the plates rotates as a solid body with constant angular velocity ~ about an 
axis normal to the plane of the plates. The center of mass of the liquid is located on the 
axis of rotation and the wetting angle is equal to 7/2. 

22 We introduce dimensionless variables by choosing the quantities ro, ~ro, p~ ro as scale 
factors for length, velocity, and pressure. Now let ~, ~, z be a rotating cylindrical co- 
ordinate system rigidly fixed to the plates. The z axis is directed along the axis of ro- 
tation, z = 0 and z = I = L/ro being the equations of the plate planes. Liquid equilibrium 
with respect to this coordinate system will be termed equilibrium of the rotating liquid. 

For all values of the dimensionless parameter 8 = p~2r~/o one of the possible forms of 
rotating liquid equilibrium is a circular cylindrical surface of radius n ~ 1 [2]. 

The axisymmetric equilibrium surface is characterized by the line F along which it 
intersects t]he semiplane ~ = const. We will consider axisymmetric forms for which in motion 
along F from the plate z = 0 to the plate z = I the distance from the axis of rotation changes 
monotonically. Such forms will be termed simple. In the case of monotonic increase simple 
equilibrium forms of the form z = Z(~) are defined by the equation [2] 

2 / /  = (~/2)~ 2 § c, ( 1 . ! )  

where 

~ = ~ ( (  ,z, ~, 
+ z'2W 2 ] " 

To t h i s  we add the  c o n d i t i o n  (we t t i ng  angle  equal  to  ~/2) 

(1 .2)  

Z' ( l ]o  ) = Zt(~]I ) = oo,  (i.3) 

the condition of conservation of liquid volume 

P 

.t ~1 ~Z'd~l = l ,  
% 

(1.4) 

and the equation 
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.f Z'd~] 
~]0 

= z, (1.5) 

which reflects the fact that the distance between the plates is equal to Z. Here and below a 
prime denotes differentiation with respect to n; c is an unknown constant; and no and n, are 
the smallest and largest distances from the equilibrium surface to the axis of rotation. 

Substitution of Eq. (1.2) in Eq. (i.i) followed by integration gives 

~ c 1.12 nZ' = ~I ~ + -~ + cl (1.6) (t + Z'~) 1/2 

(where c~ is an integration constant). 

Equations (1.3)-(1.6) define a two-parameter family of simple axisymmetric forms to the 
accuracy of the transformation z = Z -- z. 

2. To study the properties of the axisymmetric forms we choose as independent param- 
eters the following: 

O=~o/Iql I b = ~ ( l  +0)~1~/8. (2 .1 )  

From the limit equations obtained from Eq. (1.6) with consideration of Eq. (1.3), we 
find expressions for the constants c and c~ in terms of the parameters O, b, ~,: 

c = 211 - -  b(l  + 02) l/ [~ll(i + O)l, 

c~ = Oq~(! + bO~)/(i + 0). (2.2) 

We substitute these expressions in Eq. (1.6) and solve the latter for Z'. In the equation 
thus obtained as well as in Eqs. (1.4), (1.5) we transform to the new variables x = z/nl, r = 
n/n,. As a result, from Eq. (1.6), introducing the notation 

~ + o - b (t  - ~ )  ( r  ~ - -  0 ~) 
Zt ( r ,  O, b) 

V ' ( l + r ) ( r + O ) ( l q - 2 b ( r  2 + O ) - b  2 ( t - r  2)(r ' -02))  ' 
(2.3) 

we obtain 

dx u(r, O, b) ( 2 . 4 )  
Trr---- ] / ( l_ r ) ( r__O)  ' 

from which it follows that 

x = X (r, O, b ) =  
u (% O, b) dr 

g(~ - r) (r - o) ' 
(2.5) 

and from Eqs. (1.4), (1.5) we find the dependence of nl and Z on the parameters 0, b 

u (% O, b) dr ~2u (% O, b) dr 
~ = r  V(1 - r) (r - o) 

(2.6) 

l=F(O,b)= ]/(i -- ~) (r-- 0) V(i-- r) (r--0) " (2.7) 

From the specified values of % and b the equilibrium form is defined parametrically with the 
aid of Eqs. (2.3), (2.5), (2.6) and the formulas 

z = l h X ( r  , O, b), B = Blr, O ~ < r ~ t .  

Figure 1 shows the function F(0, b), calculated with Eq. (2.7) by computer. 
axisymmetric equilibrium forms exist only for ~ < 7. 

Simple 
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Fig. 1 Fig. 2 

The curve corresponding to the value b = 0 corresponds to equilibrium forms of the liquid 

at rest. Such forms exist if ~F(0, 0) = !~.5. If e = 0 (0 < I < i~.5), then limd~X=0 and 
r~O ~r 

the boundary condition on the plate z = 0 is disrupted. In this degenerate case we obtain 
equilibrium figures of a rotating liquid droplet, pendant on the plate z = I. At b = 0 the 
droplet comes to rest, and its surface has the form of a hemisphere of radius I = ~ .  With 
consideration of the fact that the problem of equilibrium forms is invariant relative to mirror 
reflection in the plane z = l, it can be said that at O = 0 equilibrium figures of an iso- 
lated rotating droplet are obtained. Such figures have been studied previously by many 
authors (see the bibliography of [i]), and in particular, their stability was considered in 
[7]. 

The dashed line of Fig. 1 depicts the curve ~ = F(e, B), where B = (i +8) -i x (I -- /O)-=. 
Forms for which the point F(0, b) lies above this curve are projectable unambiguously on the 
z axis, while in the opposite case their projections are ambiguous. This follows from Eq. 
(2.4) and the following property of the function u(r, 8, b), valid for all values of 0 ~ [0, 
i): for b < B for all rE [8, i] the function u(r, O, b) > 0 (with the exception of the case 
r = 0 = 0, where dX/dr = 0), while for b > B there exists an interval DE (0, i), such that 
for allrinAthe functionu(r, 8, b) < 0. If O =0, thenB =I, which agrees with the result of [7]. 

As 8 § 1 the equilibrium figures tend to a circular cylindrical surface. From Eqs. 
(2.6), (2.7), after change of the integration variable % = (i + 0)/2 + (i -- e)t/2 we find 
that at 0 = O* = 1 the parameter q~ ~ i, and I = ~//~ + 4b; hence with consideration of Eq. 
(2.1) we find 

~*  = 4 b *  = ( ~ / l )  ~ - -  1,  (2~S) 

coinciding with the condition for branching of a circular cylindrical surface found i~ [4, 6]. 

At I = 0 the problem of branching of the circular cylindrical equilibrium state has no 
meaning. The system (1.4), (1.5) is nonsimultaneous in this case~ However if we change 
condition (1.4), for example, by equating the liquid volume in the volume of a sphere of unit 

r a d i u s  = 4./3 , t h e n  a t  Z = 0 Eqs .  ( 1 . 3 ) - ( 1 . 6 )  w i l l  d e f i n e  a s i n g l e  p a r a m e t e r  f a m i l y  

o f  t o r o i d a l  e q u i l i b r i u m  f i g u r e s .  I t  i s  known [1] t h a t  a l l  s u c h  f i g u r e s  a r e  u n s t a b l e ,  The 
c u r v e  ; = F ( e ,  b o ) ,  w h e r e  bo = 2 . 3 2 9 1 2 ,  commences a t  t h e  o r i g i n .  The v a l u e  o f  bo was c a l c u -  
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1 

fated by Newton's method from the equation ! [e(T, O, b)/I/rTTl------~)] dz = 0. At b = bo rotating 
0 

droplet equilibrium figures intersecting the axis of rotation cease to exist, and beginning 
with this value, toroidal figures exist. There has been discussion on the definition of 
the critical value bo (see [i, 8]), which was resolved in [7]. The value of bo determined in 
the present study coincides with that obtained in [7] and later confirmed in [8]. 

For b > bo the function F(e, b) was constructed for bi values such that at I = 0 and 
b = b i the parameter 0 = ei = O.li (i = i, 3, ..., 9). The numbers b i were calculated by 

i 

Newton's method from the equation ~[u(~0~,b)/~ii--T)(~--00dT =0 (for e i = 0.05i, i = i, 
e~ 

2, ..~, 19), while for the initial approximation to b i the value of bi_ I obtained in the 
preceding step was used. 

Let k~2 be an integer. We denote by F i (i = 0, i, ..., k -- I) the segment of the arc 
of meridional section F, included between the planes z = il/k and z = (i + l)l/k. We will 
say that an equilibrium form F has a multiplicity of k, if Fo is a simple curve, and for 
every i~l the segment F i can be obtained from ri_, by mirror reflection in the plane z = 

il/k. 

The branch of axisymmetric forms with multiplicity k branches from the cylindrical 

state at values Bk = kf(~/1)2 -- I. 

Any axisymmetric equilibrium form is either simple or multiple. In fact, if two 
simple equilibrium surfaces are "extensions" of each other, forming one axisymmetric form, 
then each of the forms is uniquely defined by three parameters: no, nl and B(no, q[, B), where 
no is the value of ~ in the "contact" plane, and n~ and ~I are the values on the solid planes. 
But in view of the continuity of the mean curvature, there follows from Eqs. (i.i), (2.1), 
(2.2) the equation 2/(~o + nl) - ~(n~ + n~)/2 = 2/(no + n~) - B(n~ + ~2)/2, which is valid 

only for nl = h~- 

At I > ~ there exist only multiple forms. 

We will fix I and find the function b(e) by linearizing Eq. (2.7) in the vicinity of the 

critical values e*, b*: 

, oF b*)  OF (0"  b*) (O - -  0 " )  -7  - -  ( 0 " ,  (b - -  b*) = O. F ( O * , b * ) - - l + ~ ,  , o~ 

Hence, considering that F(0*, b*) = l, we find 

�9 O f , o ,  * OF ... - b ) / ~  (0~, b*). b = b * + ( O *  0 ) ~  , 

Setting 0 = O h = 0* -- h (in numerical computation the value of hwas chosen equal to i0-2), we 
obtain an approximate solution b h to Eq. (2.7). Linearizing the equation F(eh, b) -- 1 = 0 in 
the vicinity of b = bn, we find a formula for the refinement of the root b h 

laPSF 
b = bh + (l - -  F (Oil, blO)/~- b (0), bh). 

With this formula the value of b h is refined to the point where the difference [b -- bh[ be- 
comes less than i0 -~. For the refined value of b h and e = e h Eq. (2.7) is accurate to six 
decimal places. In this many,r, moving with a step h in 0 in the direction of lower e, we 
find the function b(0). At ,~ch step values of n~(0) and ~(0) (Eqs. (2.6), (2.1)) are also 
calculated. Expressions for 0F/~0, ~F/~b will not be presented because of their cumber- 

someness. 

Figure 2 shows meridional sections of equilibrium surfaces for I = 0.3 and several 
values of the parameter e (which uniquely defines the value of B). It is interesting that 
at small B the equilibrium forms intersect the plane z = 0. Such forms are physically 
realizable if the dimensions of the plate z = 0 are sufficiently small. At B = 9.93 (e = 0) 
the equilibrium form degenerates into a rotating droplet with some concavity at its pole. 

3. We will consider the stability of axisymmetric equilibrium states in the sense of 
Lyapunov and Rumyantsev [i]. Let F be a simple equilibrium form, s the ratio of the arc 
length r, measured from the plate z = 0 to the farthest removal ~ of curve F from the axis 
of rotation, and N(s, ~) the normal component of the free surface perturbation, referred 
to nlo Commencing from the principle of minimum potential energy [I, 8], the question of 
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stability of the axisymmetric form F can be reduced to the problem of eigenvalues of the 
following linear boundary problem for the function N(s, ~): 

/O<~s<~,~ 
I os~ r ~ ~1 a~Noc~ 2 ~_ aN § ~t = k N  [ 0 < ~: < 2~)" 

ON OX_o ( s = O ) ,  7 = 0  ( s = s ~ ) ;  
ds 

(3,1) 

(3.2) 

,t" .f Nrds&z = O, .( .f NF cos c,.dsdc* = .f .f N r  siB ads&,: = O. 
0 0 O 0  O 0  

Here s~ is the value of s at the point of intersection of F with the plane z = I. 
specified values of 0 and b the value of s, is given by 

(3.3) 

With 

1 rG (r, O, b) dr 
si = (1 + O) g ( l  --, '~)(r~--O ~) ' 

0 

( 3 . 4 )  

where 

G(r, O, b) = 1 / ] / t  q- 2b(r ~ + O) - -  b~(t - -  r2)(r 2 - -  02). (3.5) 

The function a is expressed in terms of the mean curvature H and the Gauss%an curvature K = 
Z'Z"/[(I + Z'2) 2] with the formula 

0 ~l~a-- OH 4H2 + 2K, 7n = n .V ,  (3.6) 
On 

where n is the unit normal vector to the surface, directed into the liquid filled region; the 
first equation of Eqs. (3.3) expresses the conservation of liquid volume, while the second 
implies the admissability of only those perturbations which leave the center of the liquid 
mass on the axis of rotation; the dependence of r on s is given by 

F IG(~,j, b) d'g s =  J ( r ) =  (l + o) / 
~ V ( i  - ~)(,"  - o ~) 

( 3 . 7 )  

The eigenvalues of the problem of Eqs. (3.1)-(3.7) are real. If the smallest eigen- 
value %, is positive, then the corresponding equilibrium state of the viscous liquid is 
stable, while if %, is negative, then it is unstable. 

Representing the function N(s, ~) in the form of a series N = 90 (s)@ _~ [gin(s)cosma 

~ (s)sin ni~]~ it can be shown that 1, = min (Xo, Xl, %=), where Xo is the smallest of the 
eigenvalues of the problem 

r ds r d s f - - a q O o - - t t @ } . ~ o = O  (O~..~s~sl) ; 

s 1 

i d% __0 (s = O, s = @,  9orals=O,, ds 
o 

and the numbers %m (m = i, 2) are defined similarly for the problem 

i d / dgm~ ( m'~ 

s 1 

d%~ _ O (s = O, s = sl), l (Pir'as~ " = 0  ( m = 4 , 2 ) .  

(3.8) 

(3.9) 

(3.10) 
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After simple transformations we obtain from Eq. (3.6) 

a -~ -- 2 [4bP + ~ P <7-Q)'-Q'], (3.11) 

where 

The eigenvalues of Eqs. 

Let {Yk(S)}k=,,2,.. " be the complete system of functions satisfying Condition (3.9): 

Ii 
Yl = 2s3 -- 3s%~ -- T0, Yh = s 2 (s -- s~) ~ -- G To (k = 2 , 3  . . . .  ), 

P = r ~ + 0 - -  b( l  - -  rD (r ~ -  02); 

Q = 2br z %- i - -  b (1%-  0~). ( 3 . 1 2 )  

(3.8)-(3.10) are calculated by the Galerkin--Ritts method [9]. 

Expanding @o (s) 

left side of Eq. 

Sl I 

Jo = ; rds = (l § O) ~ r2G (r' O' b) dr 
o o V'(t - ~) (r ~ - 0 5) 

Sl 1 

']'1 ----" ; ( 2sa - -  38'31) rds ---- ( l  -~ O) f -r2 [2'Ja (r) - -  3J ( i ) j2  (r)] G (r, O, b)dr 
o o 

(3.13) 

sl  1 

J ~ =  s U ( s - - s O 2 r d s = ( i + O )  (r)[](r)--J(l)12a(r,O,b) dr 
o o V (  t - ~1 (,,~ - o ~) 

i n  t h e  f o r m  o f  a s e r i e s  q~0 = ~n dhyh(s) a n d  s t r i v i n g  f o r  o r t h o g o n a l i t y  o f  t h e  
h = l  

( 3 . 8 )  i n  t h e  f u n c t i o n s  y ~ ,  . . . ,  Yn ,  we a r r i v e  a t  t h e  s y s t e m  o f  e q u a t i o n s  

n 

.~  (%,q + )Wp,q) dp = 0 (q = ! ,  2 . . . . .  n), ( 3 . 1 4 )  
p = l  

where 

1 

II 

"~p,q = (] %. O) ; ypyqr 2 G (r, O, b) dr 
o V ( t -  ~1 (r '~ --0"3 

(3.15) 

The functions Yk and their derivatives within the integrand of Eq. 
in terms of r by means of Eqs. 
tem (3.14), we obtain 

(3.15) should be expressed 
(3.7), (3.13). Setting equal to zero the determinant of sys- 

I (~1,1 + ~"~'1,1 " ""  a ~ , l  + ~"~n,1 

Icz,~,l + )~ . - .  a~.,~ + 2.?.,n 
(3.16) 

whose smallest root gives the approximate value of Io (approximation with excess). Equations 
for finding Ix and %2 are found similarly. 

In numerical calculation the set of parameters 8, b are chosen in the following manner. 
Initially, for each fixed value of b i = 0.04i (i = 0.i, ..., 58) the parameter 8 is varied 
in steps of 0.05 from 0 to 0.95. Then values of b i (i = I, 2, ..., 18), are fixed such that 
the curve I = F(e, bi) intersects the axis I = 0 at the value 8 i = 0.05i; at each b i value 
in this case the parameter 0 is varied in the same steps as before over the range [ei, 0.95]. 
For each pair (e, b) the coefficients ~pq and ypq are calculated with Eq. (3.15), after which 
Eq. (3.161 with number of coordinate functions i, 2, n is used to find the approxi- 

(i i~ , . k~n), m = I~ 2 ) .  To prove mations 1o ), %~=) .... , kin) (correspondingly %~I), ~ .., 
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the instability of all simple forms (and thus, all multiple forms) it is sufficient to calcu- 
late only the value of %(I) at e < 0.95 and the numbers ~(i), k(2), X(3) for e = 0.95; if 8 < 

O 1 O O 
0.95 then for all sets o~ parameters (e~ b) the values of X( ) are negative, while at e = 

O 
0~ the numbers X(3) are negative (and close to zero). 

O 

For ~ = i, r ~ 1 Eqs. (3.8)-(3.12) comprise the problem of stability of a cylindrical 
equilibrium state [2]. The critical values of the parameter b, defined by Eq. (2.8)~ corre- 
spond to the eigennumbers ko = 0. 

Numerical calculations reveal that to find the values of k~ and %2 to an accuracy of two 
decimal places, it is sufficient to limit the number of coordinate functions to n = 4. For 
n = 3.4 Eq. (3.16) was solved by Newton's method~ ~(n) with the initial approximation to ^m 
being taken in the form of the root %(n-~) > %(n). For b = 0 the values of %1, %2 > 0. For 
fixed e with increase in b the number~ %: and ~2 decrease monotonically. The curve I = 
F~(8, b) (see Fig. i) was constructed with those values of 0 and b, for which XI = 0, and on 
the curve I = F2(O, b) the number %2 goes to zero. In particular, for I = F2(I, 3/4) = 
~/2 the value %2 = 0 [2], and, according to the results of [5], at these parameter values, 
aside from axisymmetric and plane equilibrium forms, there are also spatial equilibrium 
forms branching from the cylindrical state. It is completely possible for branching of the 
axisymmetric states to occur at I = F2(e, b) (and also possible at 7 = F~(e, b)). 

Results of the study of stability of a rotating viscous droplet are presented in [I]. 
The isolated viscous droplet is stable for 0~b~b~o ~ 004587. Upon transition through the 
value b~o stability is lost relative to second harmonic perturbations. According to the re- 
sults of the ]present study a droplet confined between parallel plates (8 = 0) is unstable 
(relative to axisymmetric perturbations) for all values of the parameter b. The difference 
in the results is explained by the fact that, for perturbations as small as desired satisfying 
the wetting conditions on the plates rotating constrained at a specified velocity, there 
occurs an increase in system energy leading to the increase of the perturbations. It is 
curious that a droplet at rest in contact with parallel plates is also unstable. 

4. The cylindrical equilibrium surface is characterized by a line of intersection with 
the plane z = const. We will consider nonaxisymmetric cylindrical figures, the normal 
sections of M~ich have n-fold symmetry relative to the z axis (n = 2, 3, ...). We Fill refer 
to such figures as planar equilibrium forms of multiplicity 2n. A planar form of multiplicity 
2n is defined (to the accuracy of rotation about the z axis) if the function ~ = A~(n) is 
known, which specifies the simple segment of its normal section. 

The function Az(n) satisfies Eqo (i.i) in which now 

: t  = N , .  , 

and also the conditions of conservation of volume, 

(4.i) 

. ~l~Ald~] -- _ 

n0 

(4.2) 

symmetry, 

r 

(4.3) 

and periodicity 

I A/n == !. 

~5o " 
(4,4) 

For right cylindrical forms the boundary conditions on the plates are fulfilled automatically. 
From Eq. (i.i) with consideration of Eq. (4.1) after integration we obtain 
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"i:i'i" + , + 
�9 , ,,a . . . . . .  I] 4 ."6 -'~] C1. + s . 

(4 5) 

For definiteness we will add to system (4.2)-(4.5) the condition A~(no) = 0. We trans- 
form to the variable r = q/n2 and introduce the parameters of Eq. (2.1). Then to find the 
normal sections we obtain the parametric equations 

a = A(r ,  O, b), ~l = R(O, b)r, b-=-b(O),  
0 < 0 < t ,  O ~ r ~ t ,  

where 

T 

A ( r ,  0,  b) = f u (% 0, b) dT " R (0,  b) = 

o 

I 1 / 2  ~, 

Tu ('r O, b) d'~ 
n 1 / t t - ~ ) ( ~ - 0 )  

(4.6) 

and the function b(0) is determined numerically (as in section 2 for the case of axisymmetric 
forms) from the equation 

I 

(4.7) 

to which must be added the bifurcation condition 

* * ~ n 2 4b( . )  = 13(,~) - -  '1 (n  = 2 ,  3 . . . .  ). ( 4 . 8 )  

This condition is obtained from Eq. (4.7), if we transform to the limit as e § i. 

The family of cylindrical equilibrium surfaces is characterized by two independent 
parameters. For these parameters we choose the distance between the plates I and the 
parameter e, which with the aid of Eqs. (2.1), (4.6)-(4.8) will be used to define the value 
of the dimensionless angular velocity 8. 

Plane figures were studied in the vicinity of the critical values Bin ) in [3]. Ex- 
panding the solution of the general problem of cylindrical forms continuously deviating from 
a circular cylinder and applying the normal method of expansion of the solution in powers of 
the small deviation amplitude, the authers of [3] found bifurcation points (4.8), constructed 
the equilibrium figures in the vicinity of these points, and also obtained the relationship 
between the amplitude deviation of the normal section of these figures and the angular veloc- 
ity of rotation. The functions found by them are shown as the curves Y2 and y~ of Fig. 3. 
The branches y~ and y~ were constructed from the exact formulas (2.1), (4.6)-(4~ with 
numerical calculations. In the vicinity of the bifurcation points the curves Yn and y~ coin- 
cide. The difference in their further behavior is explained by the fact that the approximate 
solution obtained in [3] loses force. 

Figure 4 shows the complete path of the bifurcation curves for n = 2, 3, ..., 6. 

Cylindrical forms, the normal sections of which have second order symmetry about the z 
axis, exist to the value 8 = 0 (B % 0.79). At e = 0 the cylindrical surface intersects the 
axis of rotation and such a surface is devoid of physical meaning. 

With order of symmetry n > 2 the cylindrical forms cease to exist even at some e(n) > 0. 
Numbers B(n) corresponding to these e(n ) are shown in Fig. 4. When the value 8(n) is reached, 
self-intersections form on the cylindrical surface. 

Figure 5 depicts the form of normal cylindrical figures for n = 3 and several values of 
the parameter 8. 

At n = 1 the center of mass of the plane figures does not lie on the axis of rotation. 
The problem of Eqs. (4.2)-(4.5) for such figures will not be considered here. 
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Fig. 3 Fig. 4 

o 8 

Just as in the case of axisymmetric forms, it can be shown that no cylindrical forms 
lacking symmetry relative to the axis of rotation are stable. 

5. We will study the stability of the cylindrical figures. For an equilibrium figure 
with even order syrmnetry we will consider plane perturbations 

9@) = c,~ @o s(2~ns/sl) + sin(2~ns/sl) ), (5. i) 

where s is the arc length of the normal section referred to nl. The value of s varies over 
the range 0 ~s ~sl, the points s = 0 and s = s: corresponding to the values a = 0 and a = 
2~. The arbitrary constant c n characterizes the closeness of the perturbed surface to the 
equilibrium surface considered. The function ~ satisfies the unambiguity conditions 

~(0) = ~(sl)i d~l&(O) = d~/dsCs O. 

The p e r t u r b a t i o n s  o f  Eq,  ( 5 . 1 )  m a i n t a i n  t h e  l i q u i d  v o l u m e  

(5.2)  

sl 

,I ~ds = 0 

o 

and do n o t  d i s p l a c e  i t s  c e n t e r  o f  mass f rom t h e  a x i s  o f  r o t a t i o n  

(5.3) 

Sl  sl 

(pr cos st Sl 
o o 

(5.4) 

The sign of the second variation of the potential energy in the perturbations ~ is de- 
termined (see. [i]) from the sign of the integral 

+ -  
= J L , ~ ]  (5,5) 

0 

The function a is calculated from Eq. (3.6), and for cylindrical forms appears as 

a --  - -4(2bP + Q2)/(1 + 0) 2. 

Substituting the functions a, 9, dg/ds in Eq. (5.5), we obtain 

~[4n2n ~ "+i':+-+v+ ] 
/ ~  s~-  + 2n o ~ ads -- 

4c~n 
(t -~- O) I i 

[n 2 -- IJ.2], 

where 

1 
G (% O, b) d'~ . 

4 = Vii - +> (~ - o~ )  ' 

I 

(2bp -,- Q+) a (~, o, b) d~ 

0~ 
(5.6) 
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Fig. 5 

the functions P(~), Q(T), G(T, 0, b) are defined by Eqs. (3.12), (3.5) if we take r 2 = 
therein. 

A plane figure with even order symmetry is unstable (in the Lyapunov-Rumyantsev sense), 
if for its parameter values e, b(0) the inequality 

I l I ~ > ~  2 (5.7) 

is fulfilled. At 0 = 1 the integral I~ = w/VT+ 4b = w/n, and I2 = wvrf+ 4b = wn, so that for 
any n the product IzI2 = ~2. Inasmuch as this product is independent of b, at the bi-- 
furcation point the derivative "along the branch" d(I~/I2)/d010=~ coincides with the partial 
derivative 3(I~I2)/3010=t. With the aid of Eq. (5.6) we find that at e = 1 the derivative 
3(ItI2)/30 = 0, while d2(flf2)/dO ~ = 0~(I~12)/002 = 1 2 ~ b a / ( l + 4 b ) a > O .  From this it follows that 
for each branch Eq. (5.7) is satisfied in the vicinity of the bifurcation point. In 
other words, all plane figures with even order symmetry which branch from a circular cylindri- 
cal state at values B~n) = n2 -- 1 are unstable in the vicinity of these values. 

Along the branches with n = 2.4 the product I~I2 was calculated with a computer. It was 
shown that with decrease in the parameter % (or ~) this product increases monotonically. 

We note further that for a circular rotating column a =--~ -- i, st = 2~, Io = 2wc~(n 2 -- 
1 -- ~). Thus with increase in B the second variation of the potential energy in the pertur- 
bations of Eq. (5.1) decreases and changes sign to negative upon transition through the bi- 
furcation value ~n)" 

For the equilibrium states with odd order symmetry n (n>~3) a perturbation of the form 

2~ns 2n (n -- t )  s \ 
q) = cn I~,~_~) c o s  ~ - -  I ( , )  c o s  ) �9 ( 5 . 8 )  

$1 "8~ ' 

~rcos2=(')Scos2~--Jsdo satisfies the" necessary conditions (5.2)-(5.4). For O = I the where I ( . ) =  
3 81 81 ~ 

integrals I(n ) and I(n_1) are equal to zero, and consequently, Io = O. We will show that 
nontrivial equilibrium figures with parameters e and b close to the bifurcation values are 
unstable in the vicinity~ of the bifurcation points Eq. (4.8). For the perturbations of Eqo 
(5.8) we represent the integral Io in the form 

2noUn I~n-l~ (~2 _ ili~ ) -4- I~n) \ ;j  IlI~ - -  

I~ - -  ( i  + O) 11 

2c: iI~._l) jo (2bP + O.gcos4.~ns ds + i2 ) ! (2bP + O,) • 
(i  + 0) 2 sx b 

y 2.~ns 2n (n -- t )  s 
- -  i )  s ds -- I(,~-l)I(~) (2bP -i- Q2) c o s .  c o s  ds . X c o s  4 n  (~'1 

0 
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It can be shown that at 0 = i, along with the expressions in the squared and figured brackets 
the first dm:ivatives of those same expressions with respect to 0 go to zero, while for the 
expressions in figured brackets the second derivatives with respect to e are also equal to 
zero. With consideration of these facts, we find that at 0 = 1 the derivative dfo/dO = 0f0/88 
= 0 and 

d2fo/dO2 = 021o/802=2a~nI[  ~ [ n -2  ( n - -  !) 2 - -  1] (aI(~)/8O) 2 = - -  2~ 3 ( 2 n - -  t ) n - e  < O. 

From this it follows that in the vicinity of the bifurcation points Io < 0, proving the in- 
stability of the branched equilibrium figures with odd order symmetry. 

6. We define the potential energy of the rotating liquid by the formula [i] 

U = o X  .1 .. - - g m I ,  

where  I i s  t h e  moment o f  i n e r t i a ;  Z i s  t h e  a r e a  o f  t h e  l i q u i d  f r e e  s u r f a c e ,  
symmet r i c  e q u i l i b r i u m  s t a t e s  

( 6 . 1 )  

For simple axi- 

I I 

o V ( i  - ~) (~ - o ~) 'o 

Substituting these expressions in Eq. (6.1), we obtain 

& =  2 = >  = n ,  ( 1 + o )  f f~Z; '~Tr '2~ , ' )  ( , + 0 ) .  "V(~ --' .) ir -:O) " 
o o 

(6.2) 

For fixed I tile function b(8) can be defined by the numerical method described in Sec. 2. 
For an axisymraetric form of multiplicity k, characterized by the parameters 0, b(e), the 
energy E k = kE~. 

For planar equilibrium figures with n-fold symmetry relative to the axis of rotation 

1 1 

0 l / ( t  - -  r') (r' 2 0 i ~  ' I = 2pnln~r~ rau (r, O, b) dr 
o I / ( t  - r )  ( .  - t)) " 

Hence, with the aid of Eq. (6.1) we find 

U 1]ln l N7 (r, O, b) dr b r3u (r, O, b) dr 
Z2~-2~r~(~ = ~  (1@0) .i_(tZ;2-~-r2Co 5 t + 9 .  Vit_Z'r)  (r__ O) " 

0 0 
(6.3) 

For a specified n the function b(0) is determined numerically with Eqs. (4.7) and (4.8). 

For a circular cylindrical equilibrium state 

z o  = 2,~.o~---g- = 1 t - ~ . 

Using Eqs. (6.2) and (6.3), the energy of axisymmetric and cylindrical forms was calcu- 
lated numerically for a number of values of the parameters I and n (steps of 0.0! in e), and 
then for a giw~n ~ (or n), using the value of b(e) thus found, the parameter ~ was determined 
with the aid of Eqs. (2.1) and (2.6) (or Eqs. (2.1) and (4.6)). For each ~ together with 
the value of E~ (or Ea) the energy Eo of the circular cylindrical state was also calculated. 

According to the results of [2], a circular cylindrical column of rotating viscous liquid 
is stable, if 

< p ,  rain {~*, * min{(~/1)~ 1 3~ ~ = ~ , , t =  - ."  , .  
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Fig. 6 

For B < B* we introduce the function 

~P (l, 3) == rain {Ei (l, 3) --Eo (l, ~)}, ( 6 . 4 )  
i=I,2 

where the minimum is calculated over all axisymmetric (simple and multiple) and all plane 
equilibrium forms, existent at the values of 1 and B. 

Equation (6.4) provides an upper limit for loss of stability of an equilibrium viscous 
liquid, characterized by parameters I and B. The function ~ is presented in Fig. 6 for 
certain 1 values. 

For 1~/2 the cylindrical state is stable if B < B,~.3o For such B values the lowest 
potential energy is found in simple axisymmetric forms, existing for 0~ B~ B*. The 
function ~(8) is presented in this case for the values 1 = 2.5; 2; ~/2. For fixed 1 the 
function ~(B) reaches its maximum value ~max at B = 0. If 1 = 7/2, then ~max ~ 0.204. With 
increase in./ the value of ~max decreases. For 1 = 2.5 the value is 0.04. 

For 1 < ~/2 the critical value B* = 3. If i~.5~.~ 1 < ~/2, then r is defined for all 
0~B~ 3. Beginning at the value B = 0 up to some value B1 ~ (0.79; 3) the lowest potential 
energy is found in si~le axisymmetric forms, and for B > B1, in figures with fourfold 
symmetry. For 1 < 41~ the function is defined only beginning with some value B = B~ > 0, 
corresponding to a degenerate axisymmetric form ~(B). For 1 = i.i the number B~ = 0.51, 
while Bl = 0o104. For 1 = 1 the function El(B) is defined only for B > 0.95 > 0.79. The 
curves ~ = E~(I, B) - Eo(l, B), and ~ =.E2(I, B) - Eo(l, B) do not intersect. For l~ 1 the 
function ~(l, B) = E2(/, B) - Eo(/, B), where E2(/, B) is the potential energy of a plane 
figure with n = 2 symmetry. For each l~-i the maximum value of ~max is achieved at B = 0.79. 
For I = 1 this is equal to 0.34. The function ~(B) itself is defined for l~l in the inter- 
val (0.79; 3). 

The author expresses her gratitude to L. V. Ovsyannikov for scientific guidance and to 
V. V. Pukhnachev for his many valuable contributions to the study. 
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EFFECT OF INTERPHASE TANGENTIAL FORCES ON FLOW DEVELOPMENT 

IN A WEAKLY CONDUCTIVE LIQUID 

A. I. Zhakin UDC 533 

Coulomb forces induce motion in a weakly conductive polarizable liquid by means of volume 
forces [1-5] and tangential surface stresses [2, 6]. While the former type of flow has a 
threshold character [1-5], the latter can develop in a vanishingly small electric field upon 
motion of surface charge over the free surface of the liquid [6]. The surface charge accumu- 
lation time on the free surface is of the order of magnitude of the free charge relaxation 
time t e = e/o [7]. If the problem characteristic time to satisfies the inequality to < te~ 
then surface charge can be neglected and the major role will be played by polarization forces 
(for example, in problems involving stabilization of the free surface of a dielectric liquid 
by an electric field [2, 8, 9]). For to ~ t e Coulomb surface forces cannot be ignored, and 
their consideration leads to the possibility of electroconvective flows. 

In the present study the basic principles of thresholdless electroconvection will be 
considered, using the example of flow of a weakly conductive polarizable liquid under the action 
of surface forces produced by a special electrode geometry. 

i. Formulation of the Problem. We will consider two incompressible viscous weakly 
conductive polarizable immiscible liquids, situated between two infinite horizontal electrodes 
and separated by a free surface S. We introduce a cartesian coordinate system as shown in 
Figs. I, 2, and denote by ~i the region occupied by liquids, with $I = (-~ < x < ~, z = hl + 
a cos ~x) being the upper curved electrode, and $2 = (--~ < x < ~, z =--h2), the lower planar 
electrode. Here and below, the indices 1 and 2 refer to quantities defined in the regions 

Liquid motion will be described by the electrohydrodynamics equations 

Oi(Ovi/Ot + (v iv )v i )  = - - V P l  + NiAvi + q~Ei - -odez ,  

div  v~ ~ O, div  e~Ei = 4nq~, Ei = - - V ~ i ,  (I.i) 

Oq/Ot + div j~ = 0 on Qi, 

where 0i is the density; Pi is total pressure [8]: J~ = ~iEi + qlvi is current density; qi, ~ 
are constant dynamic viscosity and conductivity coefficients; qi is volume charge density; ~i 
is electric field potential; e i is dielectric permittivity; g is acceleration of gravity 
(i = i, 2). 

The boundary conditions for Eq. (i.i) follow from the conditions of adhesion, specifi- 
cation of potential on the electrodes, and kinematic, dynamic, and e!ectrodynamic conditions 
on the free surface. They have the form [6, 8] 

S l : v l  = 0 ,  qh = U = c o n s t ;  S ~ : v ~  = 0 ,  (p~-----O; 

S : <v> = O, O//Ot = v x ' n l v / W L  w~ = % ,  

<eE.n> = 4~qs , Oqs/Ot + divs i  ~ H q s v l . n  + <in)  = O, 

Khar'kov. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, 
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